Si l'on considère un système d'alimentation triphasé défini comme:
après transformation dans les axes d-q, on obtient:
![]() |
(1.109) |
![]() |
(1.110) |
![]() |
(1.111) |
![]() |
(1.112) |
Si
, ce qui exprime la synchronisation de la fréquence d'alimentation et de la vitesse du rotor avec un retard dû à une charge
et
alors les relations précédentes deviennent:
![]() |
(1.113) |
![]() |
(1.114) |
représente la réactance synchrone longitudinale,
la réactance synchrone transversale et
la tension induite dans les phases statoriques à circuit ouvert (
) en l'absence de saturation par le flux correspondant au courant d'excitation
au régime considéré;
est également appelée tension induite synchrone.
Si l'on considère la machine en convention récepteur, on obtient alors le diagramme vectoriel suivant:
On a:
![]() |
(1.119) |
où, en termes de phaseurs
avec
alors,
L'angle orienté de
vers
est appelé angle de déphasage interne.
Le déphasage entre
et
du diagramme précédent définit le facteur de puissance de la machine pour le cas de fonctionnement considéré.
L'angle entre et
représente l'angle de charge
. Il est orienté de
vers
et, de même que pour
et
, il est compté positif dans le sens trigonométrique.
Rappelons la signification physique de cet angle.
L'angle représente donc la variation de la position de la roue polaire entre la marche à vide et la marche en charge pour un observateur lié au champ tournant. La mise en évidence et la mesure de cet angle de décalage dû à la charge s'obtiennent facilement par stroboscope. En effet, en disposant en bout d'arbre un disque muni d'un repère et en l'éclairant par un stroboscope alimenté à la fréquence du réseau auquel le stator est connecté, on détermine la position du repère, qui apparait alors fixe, d'abord pour un fonctionnement à vide puis pour un cas de charge quelconque. La différence de position du repère fournit l'angle de charge mécanique tel que:
Le diagramme vectoriel défini par la relation 1.120 est utilisé normalement pour prédéterminer le courant d'excitation en charge. Le cas de fonctionnement est défini par la tension aux bornes, le courant (ou la puissance apparente) et le facteur de puissance. Le déphasage entre
et
, c'est à dire la position de
par rapport au système d'axes d-q n'est donc pas, a priori, connu. De ce fait, les composantes
et
du courant ne sont pas directement déterminées.
Pour lever l'indétermination, on suppose le problème résolu et le diagramme vectoriel établi pour un cas de charge quelconque (figure 1.28). Les différents segments de droite inclus dans le diagramme représentent respectivement:
Le phaseur représentatif de la tension synchrone induite par le flux des inducteurs seul, est décalé de
en avance par rapport à l'axe des inducteurs choisi comme axe direct (axe d).
est donc porté par l'axe transversal q.
Le système d'axes d-q étant positionné, la projection de
sur ces axes détermine les composantes
et
d'où:
En élevant en B une perpendiculaire à , on détermine les points E (intersection avec
) et F (intersection de
avec la perpendiculaire à
issue de D).
Par construction on fait apparaître au sommet de B un angle égal à
de sorte que:
d'où
d'où
Soient ,
et
les caractéristiques de fonctionnement désirées. Les paramètres
,
,
sont des constantes de la machine considérée.Le diagramme de tension pour un cas de charge quelconque s'établit donc selon le procédé suivant:
du point B défini par
on porte deux phaseurs de valeurs respectives
et
qui déterminent les points E et F du diagramme. La direction de
est donnée par la droite
et sa valeur par la projection du point F sur cette direction. La direction de l'axe q étant connue, on en déduit celle de l'axe d. On complète le diagramme en construisant le point C et en déterminant les composantes
et
. L'angle entre
et
correspond à l'angle de charge
.
Le diagramme de tension ainsi établi est dit diagramme de Blondel ou des deux réactions.
Dans le cas des machines synchrones à pôles lisses, les réactances synchrones et
sont pratiquement égales, de sorte que l'équation 1.120 prend la forme simplifiée:
L'établissement du diagramme à partir des conditions définies par ,
et
est immédiat. Ce diagramme porte le nom de diagramme de Potier ou diagramme de Behn Eschenburg.
La détermination de au moyen des diagrammes de Blondel et de Potier permet de déterminer le courant d'excitation en charge, à partir de la caractéristique à vide
qui, dans le cas d'une machine non saturée, est linéaire.
Dans les machines de moyennes et grandes puissances, la chute de tension ohmique est toujours négligeable vis-à-vis des chutes de tension inductives dans les réactances synchrones [17] de sorte que, si l'on néglige également les pertes fer, on a la puissance apparente (S) de la machine triphasée qui est:
Compte tenu du signe affecté à l'angle de charge, on tire:
et
ainsi que
On a alors
guillaume 2008-11-17